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Abstract. The eigenstates of arbitrary-order parasupersymmetric Hamiltonian p corresponding
to a particle with spin p2 in the presence of a harmonic oscillator potential and constant magnetic field
directed along the z-axis are constructed in terms of eigenstates of a one-dimensional harmonic
oscillator. Also, parasupersymmetric coherent states with degenerate multiplicity of an ad hoc
bosonic annihilation operator of parasupersymmetric eigenstates of the Hamiltonian mentioned
above are calculated.

The coherent states of systems have been related to the representations of an arbitrary Lie group.
These have been already constructed and investigated [1]. Using elaborate methods of group
theory one can study the properties of these systems. Also, the coherent states are related to
the geometric quantization theory by considering the group representation space as the Hilbert
space of states of a quantum mechanical system [2, 3]. The coherent states of a harmonic
oscillator provide an adequate means for the quantum mechanical description of coherent light
sources and, also, they have been used in communication theory at optical frequencies. The
structure of the canonical commutation relations of a quantum harmonic oscillator is described
by a group, the so-called Heisenberg–Weyl group. The coherent states of the quantum harmonic
oscillator are constructed by the representation bases of the Heisenberg–Weyl group.

Supersymmetry algebra [4–9] is one of the important aspects of solvable problems in
quantum mechanics; it has been generalized to parasupersymmetry Lie algebra of arbitrary
order p [9–13]. On the other hand, it has been shown that wavefunctions of one-dimensional
quantum solvable models represent Rubakov and Spiridonov parasupersymmetry algebra of
order p [14,15]. This is a generalization of supersymmetry algebra, and the problem of a one-
dimensional harmonic oscillator is one of them. In this paper following the procedure of [16]
we construct parasupersymmetric coherent states with degeneracy of orderp, by introducing an
ad hoc bosonic annihilation operator of parasupersymmetry of orderp for the one-dimensional
harmonic oscillator.

As we know the simplest operators for describing a quantum mechanical system with
one degree of freedom are the coordinate operator x̂ and the momentum operator p̂, and they
satisfy the Heisenberg–Weyl algebraic relations

[x̂, p̂] = i [x̂, 1] = [p̂, 1] = 0. (1)
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Another pair of operators is sometimes more suitable. These are the bosonic annihilation
operator a and its dagger, the creation operator a†, given as

a =
√
mω

2
x̂ + i

p̂√
2mω

a† =
√
mω

2
x̂ − i

p̂√
2mω

. (2)

We immediately derive the following commutation relations from equations (1):

[a, a†] = 1 [a, 1] = [a†, 1] = 0. (3)

The bosonic Hamiltonian of the one-dimensional harmonic oscillator is introduced as

HB = ω(a†a + 1
2 ) (4)

with the following commutation relations

[a,HB] = ωa [a†, HB] = −ωa† (5)

where ω is the angular frequency. The orthonormal eigenfunctions of Hamiltonian HB are

|n〉 = 1√
n!
(a†)n|0〉 (6)

with the following eigenvalues:

E(n) = (n + 1
2 )ω. (7)

Here |0〉 is the ground state

|0〉 =
(mω
π

)1
4

exp

(−1

2
mωx2

)
. (8)

Also, the lowering operator a and the raising operator a† act on the quantum states of the
harmonic oscillator as

a|n〉 = √
n|n− 1〉 a†|n〉 =

√
n + 1|n + 1〉. (9)

Let us define the para-Fermi operatorsb andb† of orderp(=1, 2, . . .), as the (p+1)×(p+1)
matrices [9, 17]

(b)αβ := Cβδα,β+1 (b†)αβ := Cβδα+1,β α, β = 1, 2, . . . , p + 1 (10)

with coefficients

Cβ =
√
β(p − β + 1) (11)

satisfying the relation

C1C2, . . . , Cp = p!. (12)

It is easily checked that para-Fermi operators b and b† realize the Rubakov–Spiridonov unitary
parasupersymmetry algebra

bpb† + bp−1b†b + · · · + bb†bp−1 + b†bp = 1
6p(p + 1)(p + 2)bp−1

(b)p+1 = (b†)p+1 = 0.
(13)

The first formula of equations (13) is a multilinear relation satisfied by para-Fermi operators
b and b†. Choosing

J+ := b† J− := b J3 := 1
2 [b†, b] (14)

from the definitions (10), it is immediately shown that the operators J± and J3 satisfy the su(2)
Lie algebra

[J+, J−] = 2J3 [J3, J±] = ±J±. (15)
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Using the relations (10) one can easily show that the generator of the Cartan subalgebra J3 has
the following explicit form:

J3 = diag

(
p

2
,
p

2
− 1, . . . ,

−p
2

+ 1,
−p
2

)
. (16)

Now, for the parasuperalgebra of order p, we introduce the parasupersymmetric
Hamiltonian H of arbitrary order p and the parasupersymmetric annihilation operator A,
as in [10, 16]

H = HBIp+1 − ωJ3 (17)

A = aIp+1 +
(a†)p−1

p!
(b†)

p
. (18)

In the parasupersymmetric Hamiltonian (17), J3 has been used for the third component
representation of the SU(2) group of the spin-p2 system, and the term −ωJ3 describes
the interaction of spin p

2 with the constant magnetic field directed along the third axis.
Equations (5), (10) and (16) obviously show that the commutation relations of annihilation
operator A, as well as its dagger, the creation operator A†, and the parasupersymmetric
Hamiltonian H are

[A,H ] = ωA [A†, H ] = −ωA†. (19)

Let us define the following states with the number p as

|ψn〉 =




1√
n!

|n〉
1√
(n−1)!

|n− 1〉
...

1√
0!

|0〉
0
...

0




n = 0, 1, 2, . . . , p − 1. (20)

Then, the eigenvalue equations for the parasupersymmetric Hamiltonian H are

H |ψn〉 = −ω
(
p − 1

2
− n

)
|ψn〉 n = 0, 1, 2, . . . , p − 1. (21)

Since the annihilation operator A acts on the parasupersymmetric quantum states as

A|ψ0〉 = 0 A|ψn〉 = |ψn−1〉 n = 1, 2, . . . , p − 1 (22)

where |ψ0〉 is the parasupersymmetric ground state. The energies of parasupersymmetric
wavefunctions |ψn〉 are negative for integern ifn < p−1

2 . The spectrum of the ground state |ψ0〉
has no degeneracy, but instead the spectra corresponding to the states |ψn〉, n = 1, 2, . . . , p−1
are (n + 1)-fold degenerate. If we define the following states for n � p,

|ψn〉 := αn,0




|n〉
0
...

0


 + αn,1




0
|n− 1〉

0
...

0


 + · · · + αn,p




0
...

0
|n− p〉


 (23)

then it is evident that these states are (p+1)-fold degenerate and that they satisfy the eigenvalue
equations (21) for n � p. In order that operator A be an effective annihilation operator of
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parasupersymmetry of order p, i.e. if A is to satisfy equations (22) for n � p, we have to
choose

αn,0 = 1√
n!

{
1−αp,p

[
(p − 1)! + p! + · · · +

(n− 2)!

(n− p − 1)!
+
(n− 1)!

(n− p)!
]}

αn,m = 1√
(n−m)! m = 1, 2, . . . , p − 1

αn,p = 1√
(n− p)!αp,p.

(24)

Let us now write |Z〉 as the coherent states of parasupersymmetry of arbitrary order p for
parasupersymmetric annihilation operator A in terms of the following infinite expansion:

|Z〉 =
∞∑
n=0

β0,n




|n〉
0
...

0


 +

∞∑
n=1

β1,n




0
|n− 1〉

0
...

0


 + · · · +

∞∑
n=p
βp,n




0
...

0
|n− p〉


 . (25)

The parasupersymmetric coherent states are eigenfunctions of the operator A with eigenvalue
z as an arbitrary complex number:

A|Z〉 = z|Z〉. (26)

Substituting the expansion (25) into equation (26), we obtain the following recurrence relations
among the constant coefficients β0,n, β1,n, . . . , βp,n:

√
n + 1β0,n+1 +

√
n!

(n− p + 1)!
βp,n+1 = zβ0,n n � 0

√
n + 1 − kβk,n+1 = zβk,n k = 1, 2, . . . , p n � k.

(27)

These recurrence relations have the following solutions:

β0,n = −
√
n!

p(n− p)!z
n−pβp,p +

zn√
n!
β0,0 n � 0

βk,n = zn−k√
(n− k)!βk,k k = 1, 2, . . . , p n � k + 1.

(28)

From the results (28), the parasupercoherent states of order p, i.e. |Z〉, can be expressed in
terms of the ordinary coherent states

|z〉 =
∞∑
n=0

zn√
n!

|n〉 (29)

associated with the Heisenberg–Weyl algebra, as the (p + 1)× 1 column matrices

|Z〉 = β0,0




|z〉
0
...

0


 + β1,1




0
|z〉
0
...

0


 + · · · + βp,p




0
...

0
|z〉


 + βp,p




− 1
p
|z(p)〉
0
...

0


 (30)

where |z(p)〉 = ∂p

∂zp
|z〉. It is easy to show that

〈z|z〉 = exp(|z|2)
〈z|z(p)〉 = zp exp(|z|2)
〈z(p)|z(p)〉 =

p∑
n=0

(p!)2

(n!)2(p − n)! |z|
n exp(|z|2).

(31)
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Now, the coefficients β0,0, β1,1, . . . , βp,p are determined by the normalization condition for
parasupersymmetric coherent states of arbitrary order, i.e.

〈Z|Z〉 = 1. (32)

Let

β0,0 = α0Qz
p βk,k = αkQzp−k k = 1, 2, . . . , p (33)

where the coefficients α0, α1, . . . , αp are assumed to be real constants, andQ is a real function.
By using the normalization condition (32), we see that the real function Q = Q(|z|) must be
chosen as

Q(|z|) = exp(− 1
2 |z|2)√∑p

n=0(α
2
p−n − 2

p
δp,nα0αp +

α2
p((p−1)!)2

(n!)2(p−n)! )|z|2n
. (34)

For the special case p = 2, i.e. for the parasupersymmetric coherent states of order two, by
choosing

α0 = 1√
6

α1 = 1√
3

and α2 =
√

2
3 (35)

the real functionQ(|z|) is calculated to be

Q(|z|) = exp(− 1
2 |z|2)√

1 + |z|2
(36)

which is in agreement with the result of [16].
Thus, arbitrary-order parasupersymmetric quantum states (20) and (23), constructed

by the states of the harmonic oscillator, are the eigenstates of the parasupersymmetric
Hamiltonian (17) describing a particle with spin p

2 in the presence of a harmonic oscillator
potential and a constant magnetic field directed along the third axis. The finite expansion (30) in
terms of the coherent states of the harmonic oscillator, if the coefficients of linear combination
are as in (33), describes the coherent states for the annihilation operator of eigenstates of
the parasupersymmetric Hamiltonian of arbitrary order p, i.e. A. Also, it is necessary to
mention the fact that constructed coherent states contain a number of free parameters, i.e.
α0, α1, . . . , αp, such that, by determination of these coefficients, we would know the coherent
states given in equation (30). Therefore, we conclude that eigenfunctions of the operator A
are degenerate, and the number of arbitrary-order parasupersymmetric coherent states of the
quantum harmonic oscillator is multiplicative.
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